29 resultados para Macrobrachium rosenbergii

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian giant crab Pseudocarcinns gigas (Crustacea: Decapoda: Menippidae) and the giant freshwater shrimp Macrobrachium rosenbergii (Crustacea: Decapoda: Palaemonidae). The Pse gigas and Mrosenbergii mitochondrial genomes are circular molecules, 15,515 and 15,772 bp in length, respectively, and have the same gene composition as found in other metazoans. The gene arrangement of M. rosenbergii corresponds with that of the presumed ancestral arthropod gene order, represented by Limulus polyphemus, except for the position of the tRNALeu(UUR) gene. The Pse. gigas gene arrangement corresponds exactly with that reported for another brachyuran, Portunus trituberculatus, and differs from the M. rosenbergii gene order by only the position of the tRNAHis gene. Given the relative positions of intergenic nonoding nucleotides, the “duplication/random loss” model appears to be the most plausible mechanism for the translocation of this gene. These data represent the first caridean and only the second brachyuran complete mtDNA sequences, and a source of information that will facilitate surveys of intraspecific variation within these commercially important decapod species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorylated sperm proteins are crucial for sperm maturation and capacitation as a priori to their fertilization with eggs. In the freshwater prawn, Macrobrachium rosenbergii, a male reproduction-related protein (Mar-Mrr) was known to be expressed only in the spermatic ducts as a protein with putative phosphorylation and may be involved in sperm capacitation in this species. We investigated further the temporal and spatial expression of the Mar-Mrr gene using RT-PCR and in situ hybridization and the characteristics and fate of the protein using immunblotting and immunocytochemistry. The Mar-Mrr gene was first expressed in 4-week-old post larvae and the protein was produced in epithelial cells lining the spermatic ducts, at the highest level in the proximal region and decreased in the middle and distal parts. The native protein had a MW of 17 kDa and a high degree of serine/threonine phosphorylation. It was transferred from the epithelial cells to become a major protein at the anterior region of the sperm. We suggest that it is involved in sperm capacitation and fertilization in this open thelycal species and this is being investigated.